CFT/TFT correspondence beyond semisimplicity

Toulouse, 14.10.2025
Aaron Hofen
Max-Planck-Institute for Mathematics, Bonn
joint work with Ingo Runkel
based on [2405.18038] & work in progress

Outline: i) Motivation

ii) 2d CFTs

iii) 3d defect TFTs

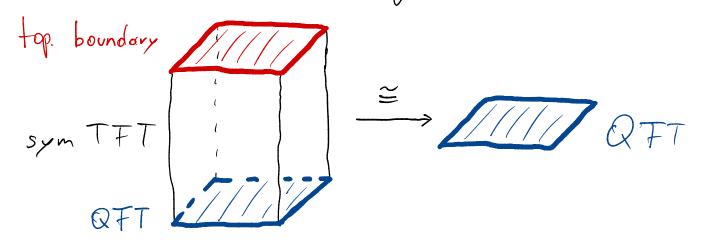
iv) FRS - construction

V) FRS - construction 2.0

i) Motivation

Problem: Quantum field theories are generally very hard to study "systematically".

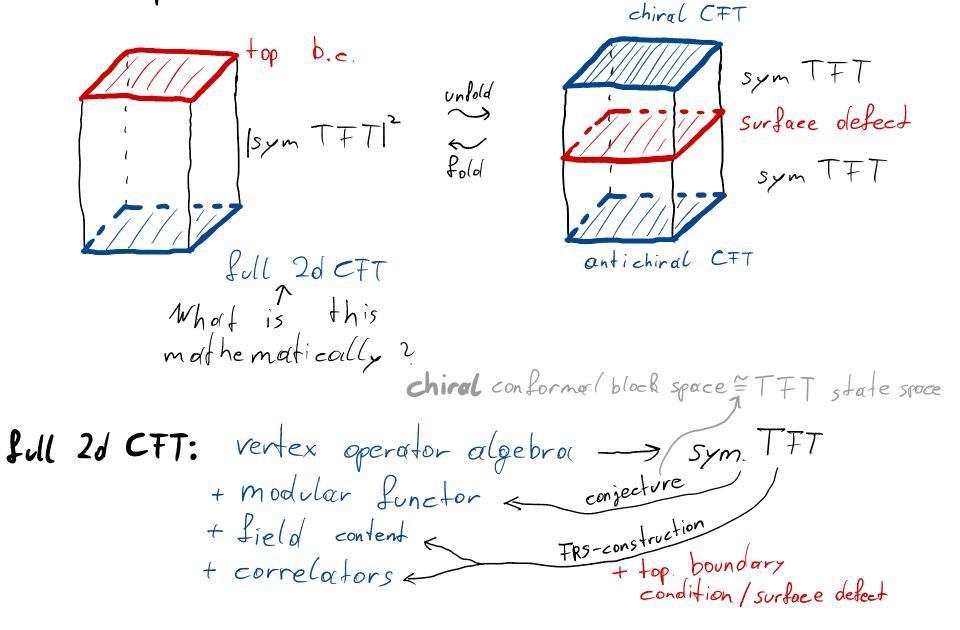
Idea: Use symmetries to make problem approachable!
"Symmetry topological field theory framework"



Apply these ideas to study full 2d conformal field theories

i) Motivation

CFT-TFT correspondence:



- For 2d CFT's we expect the following mathematical structure: 1) chiral symmetry algebras are described as vertex operator algebras (VOA's)
- 2) for any complex curve Σ' we get a conformal block space $\Sigma' \mapsto BL(\Sigma')$
- 3) fields & FEVOA modules, which assemble into "nice" eategory Rep(V)
- 4) correlators of full CFT are elements of block space of Schottky double $cor(\Sigma) \in B((\hat{\Sigma}))$
- 5) nice behaviour under extring of surfaces (factorisation) $=\sum_{b}$ $*\Psi$ Z_{1} $*\Psi$ Z_{2} $*\Psi$ Z_{3}
- 6) correlators should be invariant under mapping class group actions (related to single valuednes)

This can be packaged neatly using (higher) categorical language:

Def A (typological) modular functor is a symmetric monoidal 2-functor		
Bl Circ 1: bordi 2: diffeo o: compi	is Bord _{2+E,2,1} — Jex _{IK} Les O finite IK-Cinear lest exact functors (s / isotopy natural traf.'s horizontal composition osition vertical composition Deligne \B	CFT interpretation: Rep(V) $A \rightarrow B$ $BL(Z)$ MCG -action on Bl factorisation

Reml There is also an algebro-geometric version of modular functions and it is conjectured to be equivalent to the topological one given above under certain conditions.

Def A full CFT for a modulo- function $B(:Bord_{2+\epsilon,2,1} \to Sex_{IK})$ is a browded monoidal oplax noctoral transformation A_{IK} Bord_{2+\epsilon,2,1} $B(\circ(-)) = Orientation double functor <math>\hat{M}=M \sqcup -M$ where $A_{IK}:Bord_{2+\epsilon,2,1} \to Sex_{IK}$ is the constant 2-functor to vector.

This definition encodes:

(1-manifold)

i) For every $\Gamma \in Bord_{2+\epsilon,2,1}$ a left exact functor: $Cor_{\Gamma}(-) : Bl(\Gamma) \longrightarrow vect \cong Hombu(\Gamma)(F_{\Gamma,1}-) \longrightarrow F_{S^1}$ state space on S^1 (field content)

ii) For every 1-morphism $\Gamma \xrightarrow{\Sigma} \Gamma'$ in $Bord_{2+\epsilon,2,1}$ a natural transformation: $Cor_{\Sigma} \in Nat(Cor_{\Gamma}, \diamond \Delta_{\mathbb{K}}(\Sigma), BL(\widehat{\Sigma}) \Leftrightarrow cor_{\Gamma}) \cong BL(\widehat{\Sigma}) (\mathbb{F}_{\Gamma}; \mathbb{F}_{\Gamma}) \longrightarrow Correlators$

Def) A full CFT for a modular function $B(:Bord_{2+\epsilon,2,1} \to Sex_{IK})$ is a braided monoidal oplax notional transformation Def Def $Bord_{2+\epsilon,2,1} \to Sex_{IK}$ $B(\circ(-)) = Orientation double functor <math>\widehat{M}=M\sqcup -M$ where $\Delta_{IK}:Bord_{2+\epsilon,2,1} \to Sex_{IK}$ is the constant 2-functor to vector.

This definition encodes:

(2-morphism naturality)

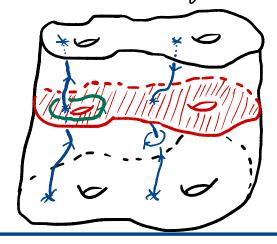
Naturality axioms encode mapping class group covariance and factorisation of correlators.

(1-morphism naturality)

+ . . .

iii) 3d defect TFT's

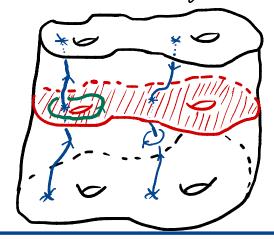
There is a notion of TFT with defects, where submanifolds of various codimension are decorated using extra doitor.



Rem.) The TFT Ze induces a modular functor Ble. For C = Rep(Y) with V a rational VOA it is conjectured that $Ble \cong Blr$.

iii) 3d defect TFT's

There is a notion of TFT with defects, where submanifolds of various codimension are decorated using extra data.



Rem.) The TFT Ze induces a modular functor Ble. For C = Rep(Y) with V a finite log. VOA it is conjectured that $Ble \cong BLr$.

iv) FRS-construction

For Σ closed surface: $Cor_{\Sigma} \in \mathcal{B}(_{\mathcal{E}}(\hat{\Sigma}) \cong \mathcal{I}_{\mathcal{E}}(\hat{\Sigma})$ with $\hat{\Sigma} = \Sigma \coprod - \Sigma$

Main idea: Can we find a bordism $\emptyset \xrightarrow{M_z} \widehat{\Sigma}$ such that $\mathcal{Z}_e(M_z)$ satisfies the conditions of a correlator 2

Yes! But not uniquely, need surface defect $A \in D_e^2 \subset D_e$ as extra input.

 $M_{\Sigma} = \Sigma \times [-1,1]$ with surface defect A at $\Sigma \times \{0\}$.

Thm [Fuchs - Runkel - Schweigert]

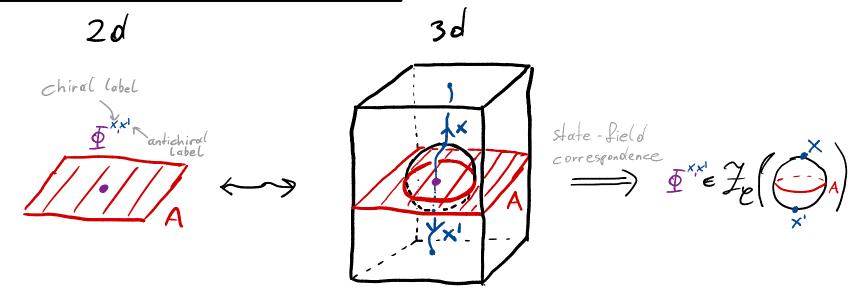
For e fusion, $Cor_{\Sigma}^{\Lambda} = \overline{f}(M_{\Sigma}^{\Lambda})$ gives consistent system of correlators. (2-morphism level of $Cor: \Delta_{iK} \Rightarrow B(e^{iC})$)

(7-morphism level of Cor)

Q's[1) In [FR5] the field content is determined algebraically can we get it topologically as well?

2) What about non-semisimple 67

V) FRS-construction 2.0



Comes from the connecting manifold M_{s1}^{A} of S^{7} $A : \emptyset \longrightarrow \hat{S}^{1} = S^{1} \coprod -S^{7}$

In analogy to construction of Ble on surfaces, we get a functor from $M_{S^1}^A$:

 $Cor_{S^{7}}^{A}: Bl_{e}(S^{1})=e\boxtimes e \longrightarrow Vect_{iK}$ $\times \boxtimes X^{1} \longmapsto \mathcal{F}_{e}\left(\bigodot_{i}^{A}\right)$

Fri∈ e \ e is representing the space of CFT bulk fields!

= Rep(V⊗V)

V) FRS-construction 2.0

Back to correlators:

$$\sum = (3)^{2} \cdot S^{7} \rightarrow S^{7}$$

$$\begin{array}{cccc}
\mathcal{I} & & & & & \\
\mathcal{I}_{e}(\mathcal{M}_{\Sigma}^{A}) & & & & & \\
\mathcal{I}_{e}(\mathcal{M}_{S}^{A}) & & \\
\mathcal{I}_{e}(\mathcal{M}_{S}^{A}) & & \\
\mathcal{I}_{e}(\mathcal{M}_{S}^{A}) & & \\
\mathcal$$

V) FRS-construction 2.0

Thm [Fuchs-Runkel-Schweigert, H-Runkel]
Let & be a modular tensor coct. Under some technical assumptions on Ze,
evaluation of the connecting manifold gives a full CFT

Bord_{2+E,2,1}
Bleo(-)

Bord₂

Bleo(-)

for any $A \in \mathbb{D}_{e}^{2}$.

Remissi) For & semisimple we recover [FRS].

ii) For E non-semisimple and A=11 (transparent surface defect) we reproduce and extend results of [Fuchs-Gannon-Schaumann-Schweigert].

Outlook

- · Computations with A non-trivial?
- · More general surface defects in Ze?
- · Computations for specific input cats, e.g. Rep(Wp) = Rep(uq(sl2))
- · Relation to other approaches?
- · Relation to skein theory with defects?